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ABSTRACT

Interpersonal ties such as strong ties and weak ties have significant
impact on the formation of structure and transmission of informa-
tion in networks. Tracking the dynamic changes of interperson-
al ties can thus enhance our understanding of the evolution of a
complex network. Nevertheless, existing studies in dynamic net-
work visualization mostly focus on the temporal changes of nodes
or structures of the network without an adequate support of anal-
ysis and exploration of the temporal changes of interpersonal ties.
In this paper, we introduce a new visual analytics method that en-
ables interactive analysis and exploration of the dynamic changes
of interpersonal ties. The method integrates four well-linked visu-
alizations, including a scatterplot, a pixelbar chart, a layered graph,
and a node-link diagram, to allow for multi-perspective analysis of
the evolution of interpersonal ties. The scatterplot created by multi-
dimensional scaling can help reveal the clusters of ties and detect
abnormal ties, while other visualizations allow users to interactively
explore the clusters of ties interactively from different perspectives.
Two case studies have been conducted to demonstrate the effective-
ness of our approach.

Index Terms: K.6.1 [Management of Computing and Information
Systems]: Project and People Management—Life Cycle; K.7.m
[The Computing Profession]: Miscellaneous—Ethics

1 INTRODUCTION

Interpersonal tie is an important concept for edges from sociology,
which describes the information carried by an edge in social net-
works [22]. It has been extensively studied in sociology and can be
classified as strong ties and weak ties. A strong tie indicates that the
nodes connected by the edge have a relatively large number of com-
mon neighbor nodes. On the contrary, a weak tie indicates that the
nodes have only a few common neighbor nodes. The interpersonal
ties can be continuously changing in an evolving network, where
an edge has its own life circle. For example, it is absent from the
network at the beginning, then becomes a weak tie and gradually
grows to a strong tie, and it disappears from the network at the end.

The life cycles of the interpersonal ties have significant impacts
on the formation of structure, such as communities, structural holes,
and local bridges, and information diffusion in networks. For ex-
ample, researchers revealed that novel information often spreads
out through weak ties in the dynamic networks [23]. However, the
information diffusion could change if the weak ties disappear or
turns into strong ties. In other words, the changes in interpersonal
ties could result in fundamental changes in network structure and
information diffusion. Therefore, tracking and exploring the tem-
poral changes of interpersonal ties can not only help us detect the
significant structural changes in dynamic network, but also help us
formulate hypotheses and seek the explanations for the changes.
Nevertheless, the complexity of the network structure and dynamic
and frequent conversion between strong and weak ties pose signifi-
cant challenges in the analysis of the evolution of interpersonal ties.

Existing visualization methods explore and analyze a dynamic
network mainly in the following ways: a) draw all the snapshots of
the network along the time axis or visualize the snapshots by ani-
mation [6, 37, 33, 13]; b) stack the snapshots of the network at each
time step together, then directly visualize the network in 3D or use
density kernel estimation to visualize the network in 2D [5, 10, 12];
c) calculate certain metrics of the network and visualize the metrics

together with the network [31, 30, 25]. These methods can visual-
ize the dynamic network directly and support various analysis tasks
for exploring the evolution of the network structure. However, they
do not provide adequate support for the analysis and exploration of
evolution of interpersonal ties in dynamic networks because these
methods mostly focus on the dynamic changes of network structure
rather than the more fundamental interpersonal ties.

In this paper, we introduce a visual analysis approach for study-
ing interaction patterns among nodes by examining the change in
strength of edges. We use strong ties and weak ties to indicate the
edges of varying strength degrees. We transform each edge into a
series of strength values over time, which is denoted as a feature
vector for each edge. The feature vectors of these edges are then vi-
sualized in a scatterplot view using multi-dimensional scaling (MD-
S) to provide an overview of the interpersonal ties. The scatterplot
view allows users to immediately see the clusters of the edges with
similar trends of strength variation. Abnormal edges can also be
easily disclosed in the scatterplot. From the overview, the users can
select a group of edges and examine further their temporal changes
in strength of edges in a pixelbar chart. A layered graph is intro-
duced to enable the users to visualize the selected edges and the
connected nodes over time. A node-link diagram is also presented
to show the network structure for a particular time step chosen by
the users.

With this work, we make the following contributions:

• A new study of the evolution of interpersonal ties for a dynam-
ic network and their co-evolution with the network structure
and information diffusion;

• An edge based analysis framework which helps users iden-
tify edges with similar trends, compare edges with different
trends, and find the hidden patterns;

• An interactive visualization system that integrates four views,
including a scatterplot, a pixelbar chart, a layered graph, and
a node-link diagram, which allows for multi-perspective ex-
ploration and analysis.

The remainder of this paper is organized as follows. Section 2 re-
views related works on dynamic network visualization and methods
for analyzing time series data. In section 3 we describe the measure
of edge strength and the feature vector extraction method. Section
4 presents the system design. In section 5, we report two use cas-
es on the Enron email dataset and an MMORPG player dataset. In
section 6, we conclude and discuss the future works.

2 RELATED WORK

2.1 Dynamic Network Visualization
Animation has been commonly employed to visualize a dynam-
ic network [18, 21, 6, 37, 34], such that the temporal variation
of the network can be shown in an animated sequence of a cer-
tain visual representation of the network such as the node-link di-
agram [33, 4, 34]. Considerable research has been conducted on
methods which creates stable node-link graph layouts to illustrate
the continuous visual changes of the dynamic network in a smooth
animation [6, 37, 34]. The animation-based scheme allows users
to track and analyze dynamic networks. Nevertheless, previous re-
search has revealed that animation based techniques are not suitable
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for complex analysis tasks, for example, the comparison of network
structure, because of human’s limited working memory [3].

Visualization of the snapshots of a dynamic network at each
time step along a time axis has also been widely used to pro-
vide an overview of the dynamic network [13, 14, 35]. Edge s-
platting [13, 11] transforms each snapshot into a bipartite network
and visualizes the bipartite networks sequentially, which provides a
clear overview but lacks details. Some techniques use small multi-
ples to represent one snapshot of the dynamic network [14, 19, 32].
Small multiples allows users to see the snapshot at each time step
immediately, but do not scale well on a large dataset. The flow
metaphor is another useful method to show the evolution of a net-
work [35, 15]. By combining the flow metaphor with community
information or graph metrics, the evolution of the network struc-
ture can be shown intuitively [24]. However, it is hard to show the
topology information using the flow metaphor.

Adjacency matrices have also been used to visualize a dynamic
network. In [5], the matrices at each time step are stacked together
and visualized in a three dimensional space, but this technique can
lead to increased visual clutter and overhead of interaction. In con-
trast, some methods [10, 12, 29] leverage a large matrix, in which
each cell displays the temporal changes of a subgraph with a time-
line explicitly drawn, for dynamic display. The methods can avoid
the clutter problem, but they lack space efficiency.

The above methods allow users to directly see the structural
changes of a dynamic network over time. However, these meth-
ods mostly put emphasis on nodes or high-level network structures.
They do not provide sufficient support for the analysis of the evolu-
tion of interpersonal ties.

2.2 Network Visualization using Graph Metrics

The statistical information of edges and/or nodes statistics can be
important for understanding a network [25, 26, 31]. Researchers
have used different metrics to characterize the network and pro-
vide useful information such as the importance of the nodes and
the edges (by using, for example, centrality) [31] or other struc-
tural properties of the network such as density, modularity, and so
forth [30]. Many graph visualization systems [25, 31] provide the
metrics to help analysts understand the overall structure of the net-
work, or guide their attention to structurally significant nodes/edges
through visual encoding and user interactions.

SocialAction [31] tightly integrates the statistical information
with network visualization. Network statistics such as between-
ness and centrality of nodes are sorted and visualized to facilitate
the identification of important nodes. GraphDice [7] layouts the
graph nodes based on some graph metric values. GraphPrism [26]
utilizes a visual design that summarizes the structure of a graph
by displaying multilevel histograms of some graph metrics such
as degree, diameter, and transitivity. Panagiotidis et al. [30] have
introduced Graph Metric Views, a technique that enriches the visu-
alization of traditional node-link diagrams with the histograms of
the graph metric values. CentiBiN [25] focuses on the computa-
tion and exploration of centrality in biological networks. Dwyer et
al. [16] have presented 3D parallel coordinates that support orbit-
based comparison and hierarchy-based comparison to explore and
compare node centrality in network. Zimmer et al. have introduced
ViNCent [38], a system that supports interactive visual analysis of
network centralities. A set of node centralities are calculated to
group similar nodes.

Compared with existing work, our work focuses on exploration
and visualization of interpersonal ties through the analysis of the
temporal variations of strength of edges. In particular, we aim at
studying the relationship between the strong-weak tie conversion
and structural changes in a network. Nevertheless, the common
techniques used in existing work such as visual encoding of cen-
trality on graph nodes are employed in our work.

Figure 1: The pipeline of TieVis.

2.3 Sociology Studies on Interpersonal Ties

In mathematical sociology, researchers have proposed some formal
models to describe and analyze social processes and social struc-
tures in social networks [9]. Interpersonal tie is one of best-known
models among the models in mathematical sociology. Granovet-
ter [23] has introduced three states of interpersonal ties, including
absent, weak, and strong, in social networks. He has also discussed
the importance of weak ties in spreading novel ideas or informa-
tion. In [27, 8], the strength of strong ties has been extensively
discussed. Friedkin [20] has described how strong ties and weak tie
impact information flow in social networks.

Our work uses interpersonal ties to characterize the evolution of
edges in dynamic networks. Different from the researches in mathe-
matical sociology, our method takes the advantages of visualization
and helps the user interactively analyze the temporal variations of
interpersonal ties.

3 OVERVIEW

This section briefly describes the approach pipeline and user inter-
faces, followed by a discussion on analysis tasks for the system.

3.1 Pipeline

The TieVis system is designed for tracking, exploring, and analyz-
ing temporal changes of interpersonal ties in dynamic networks. It
consists of three components: a data processing module, an analysis
module, and a visualization module. The workflow of our method
is illustrated in 1. In the data processing module, the network struc-
tures are extracted from the raw data and each edge is transformed
into a sequence of the interpersonal ties according to the network
statistics. In the analysis module, the distances of the edges are cal-
culated. Based on the distance, PCA is performed to to determine
the position of edges in a 2D plane and a hierarchical clustering al-
gorithm is applied to determine the order of edges in 1D axis. In the
visualization module, interpersonal ties and network structures are
visualized. The visualization enables the user analyze the evolution
of dynamic networks intuitively and interactively.

3.2 User interfaces

Our interface (Figure 2) integrates five views, including a scatter-
plot, a pixelbar chart, a layered graph, a node-link diagram, and an
information panel. It supports interactive and intuitive analysis of
the evolution of interpersonal ties from multiple perspectives. In
particular, the scatterplot provides an overview of all the edges in
the network. The pixelbar chart visualizes the details of the tempo-
ral series of interpersonal ties. The layered graph shows the struc-
ture of the network formed by selected edges from other views at all
time steps. The node-link diagram gives a snapshot of the dynamic
network to show the network structure at a user-chosen time step.
The information panel provides the detail information of the edges
the user is interested in.
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Figure 2: Our interface includes five views. (a)a information panel; (b)a pixelbar chart; (c) a layered graph (d) a scatter plot (e) a node-link
diagram.

3.3 Analytical Tasks
We identify three main analysis tasks, which should be supported
by our system, to enable users to explore and understand the dy-
namics of the interpersonal ties in a continuously changing network
interactively and intuitively.

T.1 Identify the edges with similar trends in terms of the strength
of the edges over time such that users can select, group, filter,
or compare different groups of ties for further analysis.

T.2 Detect the edges with abnormal variations of strength quick-
ly to allow users to make hypotheses and seek explanations.
We are particularly interested in finding the abnormal patterns
because the abnormal changes could significantly impact the
network structure and information diffusion.

T.3 See and explore the evolution of the interpersonal ties selected
by users. Major changes of the strengthen of edges can be
important for understanding various phenomenons such as the
formation of structural holes and small worlds.

T.4 Analyze the co-evolution relationship between the interperson-
al ties and the network structures.

4 INTERPERSONAL TIES

Our work is based on the theory of interpersonal ties from mathe-
matical sociology. The strength of a tie characterizes a set of prop-
erty of the tie, including the emotional intensity, the intimacy, time
etc [23]. An edge in the network can have three different types
of strength, which are absent, weak, and strong. In practice, the
strength of an edge can be defined simply by counting the number
of contacts between its two nodes. For example, in the telecommu-
nication network, the strength of an edge linking user A and user
B can be defined as the number of phone calls between A and B.
On the other hand, it can also be computed by the Jaccard similarity

between the neighbors of A and those of B, according to the hypoth-
esis “the stronger the tie between A and B, the larger the proportion
of individuals in the network to whom they will both be tied” [23].

It has been shown that there is a linear relationship between the
two methods [17]. Therefore, we choose the first method for sim-
plicity. The states of the interpersonal ties of an edge at each time
step constitute an time series. Thus, the dynamic network can be
transformed into a group of time series, and can be treated and s-
tudied as time series data. Principal component analysis (PCA) can
then be used to analyze the similarity of the time series data.

5 VISUALIZATION

In this section, we firstly present the design goals of the system
according to the analytical tasks and then introduce four views that
are designed for multi-perspective analysis of interpersonal ties in
details.

5.1 Design goals
G.1 Provide a visual summary of the dynamics of interpersonal ties

to enable users to quickly identify the groups of edges with
similar trends (T.1), and identify the patterns and outliers of
evolution of interpersonal ties (T.2).

G.2 Support analysis for large dataset. The design should have
high scalability to support the analysis of large dynamic net-
work dataset (T.1-4).

G.3 Employ timeline-based visualization to display the temporal
changes of interpersonal ties and networks (T.3-T.4). Time-
line visualization enables users to intuitively see the temporal
patterns over time, and relate the temporal patterns of interper-
sonal ties to those of network more intuitively.

G.4 Use multiple linked views to allow users to analyze and ex-
plore the data from multiple perspectives. Because of the high
complexity of the structure of dynamic networks, the designs
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should support multi-perspective analysis to help the user bet-
ter understand the co-evolution of the interpersonal ties and
network structure (T.4).

5.2 The scatter plot

Figure 3: The visual encodings in the scatter plot.

The scatter plot view fulfills G.1 by providing an overview of
edges in the network based on the temporal similarity, see in Fig-
ure 3(a). The state of an edge at a time step is regarded as a di-
mension. We use Euclidean distance to measure the similarity of
each pair of the high dimensional vectors, which is calculated by
the following equation:

d(x,y) =
√

n
Σ

i=0
(xi− yi)2

where x = {x0,x1, ...,xn} and y = {y0,y1, ...,yn}. Principal compo-
nent analysis is then performed to reduce the high dimensional data
into a 2D plane. In this way, dots that are close to each other in the
plane indicate that the corresponding edges are similar.

The scatter plot supports two basic interactions, brushing and
zoom, and is linked to other views by interactions. The zoom inter-
action enables the view to support network data with a large num-
ber of edges (G.2).When the user brushes a part of dots, namely the
information of selected edges will be visualized in the other three
views to support further analysis. Meanwhile, the linkage among
the brushed edges at a certain time step will be visualized by links,
as shown in Figure 3(b).

5.3 The pixelbar chart

Figure 4: The visual encodings in pixelbar chart: a dendrogram is
place on the left to show the hierarchical clustering results of edges

Design Rationale. Though the projection of edges gives an
overview of edges, the details of the edge states are not shown.
One way to visualize the time series data is the line chart. Another

way is the pixelbar chart. A line chart shows the trend of time se-
ries directly but has a low scalability, while a pixelbar chart is not
intuitive but has a high scalability. As the number of edges appear
in the network is often large, we choose the pixelbar chart.

In the pixelbar view, each edge is represented by a series of pix-
elbars (G.3). The strength of the edge is encoded by color. Light
grey indicates that the edge has the lowest strength, i.e., the weak-
est tie, the dark grey indicates that the edge has the highest strength,
i.e., strongest tie, and white indicates that the edge is absent. The
color map is shown in Figure 4.

The nearest-neighbor chain algorithm [28] is used to layout the
pixelbars, of which the pseudo code is shown in Algorithm 1. The
algorithm guarantees closer pixel bands are more similar. A den-
drogram is presented in the left of the view to show the structure
of a hierarchical clustering tree (Figure 4). When the number of
pixelbars is large, the space is not adequate to visualize all the bars.
An adaptive algorithm is applied when the total space of the pixel-
bars exceeds the view height. To decrease the number of pixelbars,
we merge pixelbars within one cluster into a larger one which is
their average. The merge result is the average of merged pixelbars.
The pseudo code is shown in Algorithm 2. By the merging oper-
ation and the dendrogram, the pixelbar chart can visualize a large
number of edges and has a high scalability (G.2)

Algorithm 1 Nearest-neighbor Chain Algorithm
Input: P = {p0, p1, ..., pn}: point set;
Output: Hierarchical cluster C

1: initial Cluster = [[p0], [p1], ..., [pn]],Stack = [];
2: while Size(Cluster)> 1 do
3: if Size(Stack) = 0 then
4: push a random cluster in Cluster into Stack
5: end if
6: Let c be the top of the Stack
7: Find nearest cluster d to c in Cluster
8: if d ∈ Stack then
9: Pop c and d from Stack

10: Merge c and d to e
11: Push e into Cluster
12: else
13: Push d into Stack
14: end if
15: end while

Algorithm 2 Merge Tree
Input: node: node of hierarchical clustering tree; goal: the num-

ber of node to be decrease;
Output: node after merging

1: Let lc be the left children of the node
2: Let rc be the right children of the node
3: if The number of leaf nodes in lc ≤ goal then
4: Merge leaf nodes in lc into one node
5: goal = goal− size(lc)+1
6: else
7: Merge Tree(lc)
8: end if
9: if The number of leaf nodes in rc ≤ goal then

10: Merge leaf nodes in rc into one node
11: goal = goal− size(rc)+1
12: else
13: Merge Tree(rc)
14: end if
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Figure 5: The layered graph visualizes the structure of selected
edges by a sequence of bi-partite network. (a) DAG layout before
time selection. (b) Mouse hovers on an edge. (c) Layout is optimized
according to the group information after time selection.

5.4 The layered graph
Design Rationale. As the structure of a dynamic network is con-
stantly evolving, it is necessary to show the structure information
of the edges in which the user interested. However, the life cycles
of the edges are not the same, therefore the structure of the network
formed by the edges are also evolving. There are three designs we
have considered, including an animated node-link diagram, sequen-
tial adjacency matrix, and a modified layered graph. The animated
node-link diagram is a straightforward and intuitive design, but it
can not show the complete evolution process in a glance. The se-
quential adjacency matrix is a better choice, because it compactly
visualizes both temporal and topological information. However, the
modified layered graph can visualize both the temporal and topo-
logical information of the selected edges more intuitively.

In the layered graph view, the temporal information is encoded
horizontally, as shown in Figure 5(a). The snapshot at each time
step is visualized as a bipartite network by representing source n-
odes and target nodes on two axes. The left axe encodes the source
vertices of the edges, and the right one encodes the target vertices.
Each edge is visually encoded as a link between the left axe and
the right one. Then snapshots are arranged end-to-end according to
the temporal sequence. Note that two adjacent snapshots shares the
same node order on the shared node axis. A modified Sugiyama-
style graph drawing algorithm [36] is applied to optimize the node
order on the axes to minimize the visual clutter within an adequate-
ly short time interval (G.3). When the mouse is hovering on an
edge in the view, the edge will be highlighted, see in Figure 5(b).

In order to find a balance between visual quality and perfor-
mance, we finally decide to do the optimization hierarchically. The
related vertices are grouped, and the vertices in the same group are
aligned together.

The grouping is performed according to the connectivity of the
vertices in the selected time step. The vertices of the edges connect-
ed together are regarded as in the same group. By mentioning the
selected time step here, it is important to point out that the align-
ments are identical for distinct time steps. If the alignments are
distinct for multiple time steps, it would be difficult for the analyz-
er to find the pattern. If edges of all time steps are considered, the
connected subsets may be too large to minimize the visual clutter
quickly. We optimize the alignment of the vertices in the groups by
Algorithm 3 and optimize the alignment of these groups by Algo-
rithm 4. Group information is encoded by color as categorical data
(Figure 5(c))

5.5 The node-Link diagram
The network structure is visualized in the node-link diagram. It
helps the user locate the brushed edges in the network. Before a
time step is selected by the user, the node-link diagram shows the

Algorithm 3 Inner-group Alignment Algorithm
Input: G = {e0,e1, ...,en−1}: edges in the group G;
Output: G′ = {ek0 ,ek1 , ...,ekn−1}: optimized alignment G;

1: if n < 2 then
2: G′ = G
3: else
4: minCross = maximum number
5: perms = all permutations of G
6: for perm in perms do
7: cross = 0
8: for i = 0; i < n−1; i = i+1 do
9: for j = i+1; j < n; j = j+1 do

10: if ei.source 6= e j.source and ei.target 6=
e j.target then

11: ps = position of ei.source in perm > posi-
tion of e j.source in perm

12: pt = position of ei.target in perm > posi-
tion of e j.target in perm

13: if ps 6= pt then
14: cross = cross+1
15: end if
16: end if
17: end for
18: end for
19: if cross < minCross then
20: if cross = 0 then
21: break;
22: end if
23: G′ = perm
24: minCross = cross
25: end if
26: end for
27: end if

network merged by networks at every time step, which shows an
overview of the network dataset (Figure 6 (a)). After a time step is
selected, the node-link diagram shows the snapshot of the dynamic
network at the time step, as shown in Figure 6 (b).

As the four views show the evolution of interpersonal ties from
different aspects, including overview of similarity of ties (the pro-
jection view), temporal changes of the values (the pixelbar chart),
temporal changes of structure (the layered graph view), and struc-
tural details at each time step (the node-link view), and they are
highly connected by interactions, the system fulfills G.4.

6 CASE STUDIES

In this section, we present two case studies on two datasets to
demonstrate the usability and effectiveness of our method.

Figure 6: The visual encodings of node-link diagram
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Algorithm 4 Inter-group Alignment Algorithm
Input: S = {G0,G1, ...,Gn−1,H}: A set of edge groups Gi and a

group of other edges H;
E = e0,e1, . . . ,ew−1: the set of all edges

Output: S′ = {ek0 ,ek1 , ...,ekn−1 ,H}: optimized alignment S;
1: if n < 2 then
2: S′ = S
3: else
4: transGroup = []
5: relatedGroups = {}
6: for e in E do
7: ps = the group contains e.source
8: pt = the group contains e.target
9: if ps = pt then

10: continue
11: end if
12: if ps is not in relatedGroups then
13: add ps into relatedGroups
14: end if
15: if pt is not in relatedGroups then
16: add pt into relatedGroups
17: end if
18: transGroup[ps, pt]+ = number of times Edge e exists
19: end for
20: f rontPart = G− relatedGroups−{H}
21: middlePart = relatedGroups−{H}
22: minCrossValue = maximum number
23: perms = all permutations of middlePart
24: for perm in perms do
25: crossValue = 0
26: perm = f rontPart + perm+H
27: for i = 0; i < n; i = i+1 do
28: for j = i+1; j < n+1; j = j+1 do
29: crossValue+ = transGroup[perm[i], perm[ j]] ·

( j− i)
30: end for
31: end for
32: if crossValue < minCrossValue then
33: G′ = perm
34: minCrossValue = crossValue
35: end if
36: end for
37: end if

6.1 Data Description

The first dataset is extracted from the Enron Email Dataset. The
original dataset includes all the mails sent and received by 184 em-
ployees in the network. In [1], the occupations of the employees
are given. We extracted 25370 emails sent among these employees
from May 1999 to Dec. 2002.

The second dataset [2] is a game player chatting dataset which
is collected from a massively multiplayer online role playing game
(MMORPG). We use the chat log of the game players on Jan. 10
2014, which is aggregated by hour. The network in each hour con-
tains a number of connected subgraphs. We ordered the subgraphs
by the number of nodes and take top-k networks to do our test.
There are 508 nodes and 1265 edges in total.

6.2 Case 1: The Enron Mail Dataset

The Enron Corporation used to be one of the biggest energy, com-
modities, and services company in the world. It went bankrupt on
December 2, 2001. In this case study, the analyst explores and
analyzes the evolution of interpersonal ties in Enron in the period
around its bankruptcy.

The analyst firstly find that the uneven distribution of density of
the edges. He explores the evolution of interpersonal ties in differ-
ent areas of the view and finds out that the evolution patterns are
different, as shown in Figure 7(a),(b).

He checks the edges on the lower right of the view by brushing
these edges (T.1). The evolution of interpersonal ties of these edges
is shown in the pixelbar chart. The pixelbars shows that the first six
edges appear in almost the same period and have similar trend of
interpersonal ties (T.3). By checking the node information of these
edges in the info panel by hovering mouse on the pixel bars, he finds
out that the employees linked by these edges are executives and vice
presidents of Enron. He checks the occupations of the nodes and
finds out the occupations include “Employee Government Relation
Executive”, “Vice President Government Affairs”, “Vice President
Regulatory Affairs”, and “Vice President Vice President & Chief of
Staff” (Figure 7(b)). The occupations indicate that the employees
deal business with government, therefore the edges between them
show high strength from September to November as they contact
frequently during the government investigation and the bankrupt
procedure.

He notices that the interpersonal tie between james.steffes and
jeff.dasovich is evolving regularly. To explore the relationship be-
tween the evolution of interpersonal tie and the evolution of struc-
ture evolution, he brushes many edges in the projection view. He
first selects the time May-2001 when the edge is a strong tie and he
notices that in the bipartite view. There is some edges missing at
the next time step (June-2001) and the edge turns into a weak tie
at the next time step, see in Figure 7(d). He therefore clicks on the
next time step to further explore the difference of the network struc-
ture. He finds out that there are some edges disappear in the group,
including the edges that link jeff.dasovich and steven.kean, richard
shepiro and james.steffes (T.4), which reveals the relationship be-
tween the network structure around james.steffes and jeff.dasovich
between the interpersonal ties of the edge (in Figure 7(e)).

6.3 The MMORPG Player Dataset
The analyst first brushes different areas in the projection view. The
pixelbar chart shows that the behaviors of the users are different:
palyers in Figure 8 mainly talk to each other after 12 am and the
interpersonal ties between them is strong; players in Figure 8 talk
to each other after 12.pm more and the strengths of ties decrease in
the period from 12 pm to 12 am; players in Figure 8 talk to each
other almost the all day, but the strengths of the ties are weak (T.1).
This is mainly caused by the different log on time of the players.
Besides, the personality of players may also affect the interpersonal
ties, which interprets the different strength of ties of the players at
the same time step.

7 DISCUSSION AND FUTURE WORK

In this paper, we presented a new, interactive approach for analy-
sis and exploration of dynamic interpersonal ties. The scatter plots
together with the other four views provide an overview to detail
analysis scheme, which makes it much easier for users to find inter-
esting patterns. We demonstrated the effectiveness of our method
with case studies on two datasets.

One of the limitations is that the current approach supports only
small dataset analysis. Although we design the visualizations with
the ability of scaling to large datasets, we don’t test large datasets in
our system. Another limitation is that visual comparison and visual
query is not well supported in the system, which makes the analysis
of pattern not very convenient.

As future works, we intend to further explore more scalable visu-
al encodings for large-scale dataset and add visual comparison and
visual query into the system.
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Figure 7: (a)(b) The analyst brushes edges in the scatter plot, finds that the interpersonal ties between four people evolve similar. Combing with
their occupations, this is related to the government investigation and the bankrupt procedure. (c)(d)(e) The analyst notices the edge from James
to Jeff is a strong tie on May but turn to a weak tie on June. He selects the two time step and observes the network structure in the scatter plot
and the layered graph, finding out that some edges disappear on June.

Figure 8: The analyst explores the MMORPG dataset by brushing edges in different areas in the scatter plot. (a)(b)(c) show the different evolution
patterns of interpersonal ties of edges.
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