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Abstract—Studying human movement citywide is important for understanding the mobility and transportation patterns. Rather than
investigating the trajectories of individuals, we employ an Eulerian approach to analyze the crowd flows among a geographical network
and a social network, which are extracted from the mobile phone data. We design a suite of visualization techniques to illustrate the
dynamic evolutions of the flow over the networks. We contribute the design and implementation of a visual analytics system, called
MobilityViewer, that supports situation-aware understanding and visual reasoning of human mobility. We exemplify our approach with

a real citywide dataset of 7 millions users in two months.

Index Terms—Human Mobility, Visual Analysis, Data-driven Intelligent Transportation System

1 INTRODUCTION

UMAN mobility data has been studied for many years.

Researchers have proposed methods to study the human
mobility records and achieved a deep understanding of human
behaviour in physical space [1], [2]. The insights obtained
from the datasets are used extensively for discovering city
dynamics, evaluating public policies and improving urban
planning [3], [4], [5], [6].

In this paper, we examine a particularly valuable dataset that
contains both crowd mobility and social ties: mobile phone
records. The dataset contains the records of several millions of
mobile phone users of a mid-sized city, including the locations
of users on the basis of the cell towers, the mobile phone calls,
and profiles (ID, coordinates, semantics) of the cell towers.
While the human mobility information is not geographically
accurate, it does provide a daily observation for the urban
crowd flow. Social networks among the users can be extracted
from the phone calls. Thus, physical dynamics and social
connections of populations in the city can be studied, e.g. the
crowd flow patterns among cell towers as well as the social
ties of users. In addition, the interconnections among users
derived from the calling network also facilitates the capability
of studies on social transportation [7], [8], [9].

In analyzing the data, one major challenge is to enable
the analyst to understand and gain insights from the crowd
flow between cell towers. For example, by monitoring and
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exploring the crowd flow, the analysts in the city government
can discover the area with high population density or mobility,
and then determine what is happening in the area and make
plans about the event. Unlike the GPS data in which the
trajectories are collected continuously at the geographical
resolutions of meters [10], [11], the cell tower-based location
records have a low and inconstant accuracy ranging from
hundreds of meters to several kilo-meters, making the analyt-
ical algorithms that rely on accurate locations infeasible [12],
[13]. From the perspective of motion representation, the study
of trajectories utilizes the Lagrangian description of human
mobility, which focuses on the trace of movement. However,
for the cell tower-based record data we explore the crowd flow
in the Eulerian view. The rationale of our choice is that the
accurate trajectories is difficult to retrieve from the dataset,
thus we utilize the cell towers to display the flow patterns.
In this scenario, each cell tower can be considered as a fixed
observation point, and the flow patterns are depicted on these
observation points.

In addition to studying the flow patterns, there is a dire need
to utilize the mobile phone calls to analyze the correlations
between the social relations of a crowd and their physical
movements. Previous studies [13], [14] on connecting social
and physical spaces have found that the geography in a city
influences the social ties of the mobile phone users. To a
certain degree, existing methods mainly focus on extracting the
correlations and predicting the social relations among phone
users in daily life with automated algorithms, while less effort
is conducted to provide an interactive exploration approach to
empower the analyst find subtle and latent dynamics hidden
in the data. For instance, the correlation patterns between the
mobile phone network and the crowd flow can reflect the
distribution of residence areas and work places, thus guide
the analysts to improve the city planning.

To address these challenges, we have designed a suite of
interactive visualization methods with which the intelligence,
experiences and inspiration of the analyst can be integrated
with analytical algorithms. We believe that equipping the



analyst with a visual analytics interface will enable a better
understanding of dynamic, random, and interleaved human
transportation and communications, as witnessed by numerous
work done for visual analysis of traffic data [4], [5], [15], [16],
[17], [18]. Specifically, our interface design focuses on three
objectives:

e Q1: How to enable the analyst to be better informed of
the flow patterns among cell towers in a city, including
the flow volume and the temporal patterns?

o Q2: How to depict the flow directions of the cell towers
dynamically?

e Q3: How can the analyst disclose the correlation between
social relations and the physical movements of the crowd?

This paper presents our effort in visually assisted knowl-
edge discovery and sense-making from massive, dynamic, and
multi-variate data. We contribute the design and implemen-
tation of a web-based visual analysis system that supports
situation-aware exploration and visual reasoning of crowd flow
in an integrated visual interface. We exemplify our approach
with case studies on a real citywide urban dataset. The main
contributions include:

« A suite of interactive visualization techniques for explor-
ing crowd flow volumes, directional dynamics and spatio-
temporal patterns;

o A visual analysis approach for inspecting human social
relations and their physical movements.

The remaining sections are organized as follows. Related work
is covered in Section 2. Section 3 presents an overview of
the dataset and our analytical pipeline, followed by Section4
where data pre-processing procedures are presented. The next
section describes the interface design and visual analysis
methods. Section 6 demonstrates the effectiveness of our
solution through case studies. We discuss related issues draw
conclusions in Section 7.

2 RELATED WORK

The work presented in this paper is related to three broad
topics: 1) trajectory visualization, 2) traffic visualization, and
3) mobile phone data analytics and visualization.

2.1

A spatial trajectory is “a trace generated by a moving ob-
ject in geographical spaces”[19]. It is usually recorded and
represented by a sequence of temporal ordered points. In
the field of visualization, trajectory data has been widely
studied in recent years. In [3], the authors classified the
visual analytics techniques into three main categories: direct
depiction, summarization and pattern extraction. Scheepens
et al. [20] presented a density-based visualization technique
to show an aggregate overview of trajectories. VATT (Visual
Analytics of Taxi Topics) system [21] was designed to discover
the trajectory patterns of taxi. Trajectories are grouped into
taxi topics to facilitate exploration of grouping patterns by
introducing the Latent Dirichlet Allocation (LDA). Liu et
al. [22] proposed a trajectory visualization technique for taxi
trajectory data to examine the source/destination pairs that

Trajectory Visualization

contain highly diverse routes. Tominski et al. [23] presented
an 3D approach to visualize attributes of trajectories. The T-
Watcher system [11] allowed for visualization and analysis of
complex traffic situations and patterns in taxi trajectories. Zeng
et al. [24] presented the Interchange Circos Diagram, a visual
representation of interchange patterns contained in massive
trajectory dataset. Ferreira et al. [6] modeled a visual trajectory
querying scheme to support origin-destination queries of taxi
trips.

2.2 Traffic Visualization

Traffic is the flux or passage of motorized vehicles, unmo-
torized vehicles, and pedestrians on roads, or the movement
of passengers or people [25]. Depending on the tasks of the
analysis methods, the traffic data visualization can be sum-
marized into the following categories[26]: visual scanning of
traffic situations, pattern extraction, context-aware exploration.

For visual scanning of the traffic data, events can be
retrieved from the real-time data. Piringer et al. [27] addressed
the importance of video surveillance data in road tunnels
and designed AlVis which enables visual presentation of the
spatio-temporal development of scenarios in real-time.

For the task of pattern extraction, the mobility patterns of
objects are discovered from the traffic data which characterize
the movements, evolutions and relations with other objects.
The TripVista system [28] supported the investigation and
analysis of microscopic traffic patterns and abnormalities.
Andrienko et al. [29] suggested a visual analysis approach to
extract clusters from complex trajectories. First a small subset
is retrieved from the big dataset, and the analyst performs
clustering algorithm on the subset. Then a classifier is built on
the clustering result to attach new trajectories to the existing
clusters. Clustering and classification results can be visually
inspected and refined.

For context-aware exploration task, the system is required
to support querying, exploration, reasoning of the traffic situ-
ation. Wang et al. [30] designed a visual analysis system for
on-demand complex topological queries of trajectories based
on a dynamic road-based trajectory query model and a bi-
directional linked hash index scheme.

2.3 Mobile Phone Data Analytics and Visualization

Gao et al. [14] proposed an agglomerative clustering al-
gorithm to explore the interpret the patterns in the phone
call interactions as well as the mobile phone users’ move-
ment. The method utilized the geographical context of mobile
phone cell towers and designed an alternative modularity
function incorporating a gravity model which is inspired by
the Newman-Girvan modularity metric. The relations between
social interactions and movement of phone users are further
studied in [13], where a similarity measure for mobility and
predictability of the movement was introduced. Zhang [12]
presented a comprehensive description of the mobility patterns
extracted from cellular data traffic network and found that the
cellular data network records can provide a finer granularity
of location and movement. In [31], [32] it is shown that the
predictability of human mobility is high by using call detailed



records (CDRs) from the cellular network. The accuracy
of predicting a mobile phone user’s trajectory can be 93%
by measuring the trajectory entropy. [33] designed a visual
analysis system to visualize the phone call records and support
the analysis of mobility patterns.

3 OVERVIEW
3.1 Data

The dataset is collected from a city with 14 million citizens,
which contains three parts: cell tower profiles, trajectory
records, and call detailed records (CDRs). The cell tower
profile is listed in Table 1. The Location Area Code (LAC)
is used as an identification of a set of cell towers which are
grouped together to optimize signalling, and the Cell ID is
a unique number to identify a cell tower within a location
area [34]. Hence, a cell tower in the city is uniquely identified
by its <LAC, Cell ID>. The function type of a cell tower is a
semantic label indicating the function type of the area around
the cell tower, such as “Residential Area”, “Business District”,
“Industrial Estate”, etc. The trajectory data comprises a unique
mobile phone user ID, a timestamp and a Cell ID. A record
is stored once a mobile phone user enters the cover range of
a cell tower. The CDRs contain a timestamp, a calling user
ID, a called user ID and the connected Cell IDs of the two
mobile phone users when the phone call starts. In the cell
tower profiles, there are over 28,000 individual cell towers
distributed in the city, and the locations are shown in Figure 1.
The trajectory records were collected from Dec. 16, 2013 to
Dec. 22 and from Jan. 14, 2014 to Feb. 27, 2014. The number
of trajectory records are over 14 billion with over 7 million
phone users, and the size is about 1.8 terabytes. The date
of CDRs covers from Dec. 16, 2013 to Dec. 22, 2013 and
contains more than 4.5 million records in each day.

TABLE 1

The cell tower profile.
Field Description
Location Area Code (LAC) | Identification of the location area
Cell ID Identification of the cell
Latitude The latitude coordinate of the cell
Longitude The longitudinal coordinate of the cell
Function type City function type of the surrounding area

Some preliminary statistics of the trajectory and CDRs are
performed based on the data on one day. Figure 2 (a) shows
the number of trajectory records in every 10 minutes on Jan.
14, 2014. We can find that the number of records increases
in the morning hours indicating the start of activities in the
morning. During the work time (9 am. ~ 12 am. and 2 p.m.
~ 5 p.m.), the quantity remains at a relatively high level, while
from about 8 p.m it begins to fall. A similar rise and fall trend
is found in the figure for CDRs (Figure 2 (b)).

From the trajectory records, the flow volume of a specified
cell tower can be derived by simply calculating the summation
of inward and outward transitions of the tower.

Fig. 1. The distribution of the cell towers indicates the
density of population citywide.
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Fig. 2. (a) The distribution of the number of trajectory
records on Jan. 14, 2014. (b) The distribution of the
number of CDRs on Dec. 18, 2013.

3.2 Design Considerations

Before crafting the analysis pipeline and visual design, we
sought principles to guide our design process. After studying
the preliminary statistics and analysis of the dataset, we arrived
at the following considerations:

« Simplification by summarization As the volumes of
trajectory records and CDRs are extremely large, it is
infeasible and unnecessary to depict every single records
in the views, thus simplification should be performed
before visualizing the records.

« Spatio-temporal analysis The trajectory records contains
both locations and timestamps, thus the two main prop-
erties should be considered for visual design.

+ Combination of multiple datasets The information and
relationship between the flows and the social relations
should be presented in the views.

3.3 Pipeline

Our analysis pipeline contains two stages, as shown in Fig-
ure 3. In the data pre-processing stage, the data is cleaned
and used to compute the time-varying crowd flow among cell
towers. The details of the pre-processing stage is described
in Section 4. In the visual exploration stage, four steps are
iteratively performed:

Flow Volume Analysis provides an intuitive summarization
of the flow volumes in each cell tower. We employ a heatmap,
a glyph-based sunburst view and a 3-D terrain view to visu-
alize the flow volumes in multiple perspectives and allow for
visual exploration and comparison..

Flow Link Analysis focuses on the flow exchange patterns
between cell towers. We apply a dynamic density-based visu-
alization method to display the direction and the quantity of
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Fig. 3. The visual analysis pipeline of our approach.

the flows between pairs of cell towers. The analyst can explore
the flow patterns of the mobile phone users in a specified range
of time.

Temporal Pattern Analysis is used for presenting the time-
varying patterns of flow volumes on each cell tower along
time. For the cell towers in the city, the analyst can compute
the correlations of the flow volume series between pairs of
cell towers, and then perform clustering algorithm by utilizing
their correlation. Ilustrating the clusters of cell towers visually
reveals the general temporal patterns and the abnormality. The
geographical relations of the clusters can also be visually
investigated.

Analysis of Social Relations and Flows facilitates discov-
ering the social communities of the mobile phone users based
on the CDRs and investigating the relations of trajectories
among community members. The analyst can visually investi-
gate a specified community and summarize the commonalities
and abnormality of the mobile phone users.

The design of our analytical process is inspired by the
visual information-seeking mantra (“Overview first, zoom and
filter, then details-on-demand.” [35]). In the Cell Flow Volume
Analysis step and Flow Link Analysis step, the analyst can
obtain an overview of the flow volumes and the flow link
patterns among cell towers. In exploring detailed patterns
for specified cell towers, the Temporal Pattern Analysis step
supports the filtering of cell towers with similar characteristics
and visualization methods to display the details of cell towers.
The Analysis of Social Relations and Flows step proposes
another filtering and exploration strategy by using the social
relations of the mobile phone users.

4 DATA PRE-PROCESSING

In the trajectory records and CDRs there are several types
of dirty records, demanding a cleaning and organization pre-
process.
e Missing values: records containing missing fields.
o Invalid values: records with Cell IDs which are not listed
in the cell tower profile or with meaningless timestamps.
« Duplicated records: records which are completely equal
to each in all fields.

After cleansing and deduplication of the dirty records men-
tioned above, about 8 percent of the records are deleted from
the dataset.

Then we focus on the detection and elimination of ping-
pong effects. The trajectory records of an individual mobile
phone user forms a sequence of Cell IDs with timestamps.
However, when the user stays in a region covered by signals
from multiple cell towers, the mobile phone may handoff
among those cell towers frequently but not steadily connect
to a single one. This phenomenon is called ping-pong ef-
fects [36], [37], which is illustrated in Figure 4 (a). Under
this circumstance, multiple redundant records are generated
even though the mobile phone user remains unmoved.

Our idea of detecting and removing the ping-pong effects
is inspired by the n-gram representation for text analysis. We
sort the trajectory records by timestamp and line up the cell
tower of each record to form a sequence of Cell IDs. Then we
check all the n-grams in the Cell ID sequence. If a consecutive
set of n-grams which only contains n different cell towers and
the interval of corresponding timestamps are short adequately,
it can be considered that the ping-pong effect happens in
this subsequence. Algorithm 1 illustrates the detection and
elimination procedure.

We provide an interactive visual exploration interface of
the trajectory records illustrated in Figure 4 (b). The record
view on the lower left side depicts the mobile phone users’
trajectory records along the time axis. The analyst can filter
and rank the users by date and the number of records. When a
specific user is selected in the record view, the bar chart view
on the lower right side displays the number of cell towers in
his/her trajectory records from the highest to the lowest. The
trajectory of the selected user is shown as a series of line
segments in the map view as well.

Finally we slice one day into intervals with equal lengths
and aggregate the transitions of mobile phone users in each
interval to derive the flow volume. The structure of the
transitions is essentially a dynamic graph, and is stored as
a series of adjacency lists in our implementation. The length
of the interval can be adaptively selected on the basis of the
requirement of the details for analysis and computational cost.
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Fig. 4.
ping-pong effect frequency.

Algorithm 1 Detection algorithm of the ping-pong effect

Require:
The list of trajectory records with length m, T;
The length of n-gram, n;
Maximum duration between two consecutive n-grams,
Lmax;
Ensure:
A set of ping-pong effect subsequences in T, P;

1: P=20;

2 Pstart = 1, Pena = 1;

3: S={TN\.Cell_ID,T».Cell_ID,...,T,.Cell_ID};

4: fori=2tom—n—1 do

5. Spgram = {T;.Cell_ID, ..., T ,_1.Cell_ID};

6: if § C Sy gram then

7: if T; 1 .timestamp — Ti1 o .timestamp <ty then
8: Dend = Pena +1;

9: end if
10:  else

11: Add the subsequence [7),,,,,...,p,,] into P;
12: S=A{Tp, +1.Cell_ID,....T, . .,.Cell_ID}
13:  end if

14: end for

In our paper, we set the length of interval to 10 minutes,
namely 144 intervals in a day.

5 VISUAL ANALYSIS

Exploring flow volumes, flow links, temporal patterns and
the correlations between social relations and flows are tightly
integrated into an interactive visual analysis process.

5.1

We utilize a sunburst view to present the inflow, outflow and
the distribution of flow directions of a cell tower. A 3-D
terrain view is deployed to visualize the flow volumes with
the dimension of height.

Sunburst View A cell tower is visually presented as a
sunburst glyph shown in Figure 5 (a). The radius of the inner
circle encodes the total volume of inflow and outflow and

Flow Volume Analysis

(a) lllustration of the ping-pong effect. (b) Visualizing trajectory records. (c) Heat map visualization of the

opacity the absolute value of the difference between the inflow
and outflow. The filled color is set to be blue when the inflow
is larger than the outflow red when outflow is larger. The
equally-placed sectors in the outside layer represent the flows
from the corresponding direction, which can be set to inflows
or outflows. As only properties on cell towers are utilized,
we did not add links between glyphs which may cause visual
clutter in the view.

o & u

Fig. 5. (a) The sunburst view. Here only top 100 cell
towers with the largest flow volumes are displayed. (b)
The 3-D terrain view.

3-D Terrain View In this view the flow volumes are
represented by the height of the peaks over the cell towers
on a street map. First the flow volume values are regularized
into the range of [0, 1]. Then the map is divided into equally-
sized grids, and the value on each grid is estimated by using
kernel density estimation based on the flow volume values of
all the cell towers to compute a density field on the street map.
We transform the density field into a height field. A threshold
is assigned to filter out the grids with very low height values
and set them to be zero. Finally the surface of the height field
is rendered as shown in Figure 5 (b). The analyst can choose
to display the inflows or outflows of the cell towers.

5.2 Flow Link Analysis

The flows between pairs of cell towers depict time-varied pat-
terns. We employ a density map-based trajectory visualization
method to deliver an intuitive view of the exchange patterns.

Given a specific time ¢, we compute the position of a mobile
phone user by the following interpolation scheme:



1) Retrieve the trajectory record r;, with timestamp #; which
is right before time ¢ and cell tower ¢y, and the one r;,
with timestamp #, which is just after 7 and cell tower c;;

2) Compute the speed value Wlﬂz) where dist(c1,cz) is
the distance between ¢ and c;.

3) If the speed value is lower than S5km/h, we consider that
the user has not left ¢;. If not, the user’s latitude and

longitude are set to be:

(t—1) X 5km/h
dist(cy,c2)

(t —1p) X 5km/h
dist(c1,¢2)

latitude : lat(c;) — (lat(cz) —lat(cy))

longitude : Ing(cy) — (Ing(cy) —Ing(cy))
where lat(-) and Ing(-) are the latitude and longitude of
the cell tower, respectively.

Essentially, our interpolation scheme evaluates each user’s
position during moving from one cell tower to another. More-
over, the judgement of the speed value in step 2 is designed
to avoid the situation in which a user is assumed to keep on
moving in a very long time period. For example, if a user has
a record in cell tower A at 8 a.m. when he/she arrives at the
office, and another record in cell tower B at 12 a.m. going for
lunch, it is unreasonable to consider that the user continuously
moves from A to B during the four hours. Hence we assume
that the user walks to cell tower B with the preferred walking
speed of humans, i.e. Skm/h [38], and derive the leaving time
reversely.

Once the positions of users are calculated, a density map
is rendered onto a street map based on the kernel density
estimation result of the positions, which is shown in Figure 6.
Within a selected range of time, the density maps are generated
in each consecutive 10-minute time interval and rendered
frame by frame dynamically. The rationale of choosing density
map is that it can present both the directions and the flow
volumes among cell towers. In Addition, the temporal patterns
can be highlighted by creating animation with the series of
density maps generated from consecutive time intervals. To
avoid visual clutter in the region with high cell tower density,
the density maps are set to have multiple resolution levels.
All cell towers are depicted in the lowest level. In higher
zoom levels, the cell towers are clustered by using the k-means
algorithm based on their spatial coordinates with different k.
The analyst can obtain an overview at a high zoom level and
zoom in to observe the local flow patterns.

5.3 Temporal Pattern Analysis

As described in Section 4, for each cell tower there are 144
samples of flow volumes in a single day. Here the samples are
considered as a time sequence to describe the flow patterns.
We first conduct clustering of these time sequences and then
visualize the clusters on the map.

5.3.1 Clustering of the Flow Sequences

To perform the clustering algorithm, the similarities between
the time sequences are derived. Given a specified day, we
apply the Pearson correlation coefficient as the similarity
metric. Thus an m x m similarity matrix is computed where m

Fig. 6. lllustration of the flow links with the density map.
The red links indicate high flow volumes between the
regions. Note that the cell towers are clustered with k = 45.
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Fig. 7. Views for temporal pattern analysis: (a) the
distribution of cell types, (b) the map view and (c) the time
sequence view.

is the number of cell towers. Then spectral clustering is done
by using the similarity matrix. Additionally, the analyst can
choose to use the volumes of inflow or outflow.

5.3.2 Visualization of the Flow Sequences and Clusters

The clustering result is displayed as a list in the interface.
The analyst can select a cluster in the list, and in the map
view (Figure 7 (b)) the cell towers that in the selected cluster
will be highlighted to enable the analyst to explore the spatial
distribution. Additionally the distribution of cell types are
displayed. In the time sequence view (Figure 7 (c)), a line chart
of the average flow volume sequence is displayed as a dash line
presenting a summary of the cluster. When hovering on a cell
tower point in the map view, the corresponding time sequence
is displayed in the time sequence view with a solid line. The
colors of the solid line and the dash line represent whether
inflow or outflow is selected in the clustering step (orange for
inflow and blue for outflow). Moreover, multiple clusters can
be activated and displayed simultaneously with different colors
in the time sequence view and the map view. The analyst
can compare the distributions of the clusters and analyze the
relations of the rise and fall patterns among clusters.



5.4 Correlation Analysis of Social Relations and
Flows

5.4.1

The communities extracted from the CDRs represent the social
groups of the mobile phone users. In our work we only focus
on the spatial distribution of the community. Based on [14],
we adopt an enhanced community detection algorithm that
incorporates the call records between cell towers and the
population on each cell tower. The analyst can set a time
period [t,t/], and then a weighted directed graph of cell towers
is created with the CDRs in which the weights are the number
of calls, and the population of cell towers are derived from the
positions of all the mobile phone users at time ‘.

Community Detection of Cell Towers

5.4.2 Community View

The community view supports deductive exploration. To visu-
alize the communities of the cell towers, the map is partitioned
into Voronoi regions based on the location of cell towers,
and the regions in the same community are painted with
the same color (Figure 8 (a)). Thus by checking the region
colors the analyst can understand the spatial distribution of
the communities. In addition, the changes of the community
distributions in two different time periods may relate to
the movement of mobile phone users, hence we design a
difference map to display the changes shown in Figure 8 (b).
The analyst can select two time intervals [tl,ti], [tz,t;], and
the corresponding Voronoi regions of cell towers in different
communities between [tl,ti] and [tz,t;] are highlighted with
green color. When selecting a region in the difference map, the
flows from time #; to t; are presented as a node-link diagram
where edge-bundling is applied (Figure 8 (c)), enabling the
comparison of the user’s movement and evolution among
regions.

ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff

Fig. 8. The community view. (a) The distributions of com-
munities. (b) The difference map. (c) Highlighted region
with a red boundary. The bundled blue and red lines
indicates the inflows and outflows among other regions.

6 CASE STUDIES

We conduct four case studies to respectively verify the four
visual exploration steps. First we check the global flow volume
patterns in the city. Then we analyze the patterns of flow
links, followed by the exploration of temporal patterns. Finally
we extract communities by using the CDRs and investigate
the evolution of the community structure with movement of
mobile phone users.

6.1

Our web-based system is primarily implemented in JavaScript
for front-end Ul, which employs OpenStreetMap as the street
map library, D3.js as graphic rendering library, jQuery Ul
for user interface components and Backbone.js as the MVC
framework. For back-end computational support, we design a
RESTful interface for communication built on Django Web
Framework and employ Apache Spark as the data processing
engine.

System Implementation

6.2 Case 1: Exploring Flow Volumes

In this case, we use the overview to explore the flow volumes
on cell towers. We choose three typical times on the following
days: Dec. 18, 2013, Jan. 31, 2014 and Feb. 10, 2014. Note
that Jan. 31, 2014 is the day of the Chinese new year when
most of the natives go home and take a vacation. Figure 9
(a) compares the flow volumes in the sunburst views. We can
notice that on Jan. 31 the radius of the inner circles is generally
smaller than those in another two days, which indicates less
daily activities of the citizens. Then we specifically investigate
the two cell towers with large volumes. In Figure 9 (b) we
find that for each of the two cell towers in blue rectangles
the direction of its largest outflow is towards the river. In the
corresponding satellite image a ferry crossing is presented in
the red rectangle, which is not shown in the street map.

6.3 Case 2: Analyzing Flow Links

Next we utilize the flow link density map to investigate the
crowd flow among cell towers. Figure 10 shows the density
map that are generated by aggregating the flow links in every
10 minutes in a period from 2:00 pm to 4:00 pm, Jan.15,
2014. The resolution of cell towers increases from (a) to (c)
in Figure 10. We start with (a), an overview of the entire city
area where the cluster number of cell towers are set to be 100.
In the downtown area (blue rectangle) we find that the density
of the crowd flow is higher than other regions. In region A
and B in Figure 10 two salient patterns are shown, thus we
further explore the flow links by zooming in the viewport
(represented by Figure 10 (c)). In region A, there are two
cell towers presenting high interchanging flows. After looking
up a detailed map, it is shown that in region A the two cell
towers lie in an exit of G330 National Highway. In region B
the radial pattern shows high crowd density in the center area
in which the coach station of this city is, thus the population
density and the crowd flow should be high.
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Fig. 10. Case 2: Flow links in different levels from (a) to
(b) and (c).



-8 dan: Jan. 22,2014 -

2 pan. Feb. 10,2014‘.1-‘

. i

(b) 2

g am Jan. 31,2014 =

'

g dm: Heb. 10,2014 =~ .7

Fig. 9. Case 1: (a) The sunburst views for three different days (b) The sunburst view for a ferry area and the

corresponding satellite image.

|Numher of Cells: 205
1 Living
| Transportation

o) v A

Industary

School/Hosptial

Jurber of Cells: 188
| Living
| Transportation

(b) i Business 4

Agricutiure

Leisure

Industary

SchoolHasptial

Living 1
“Transportation Agriculture |‘5“

y1o0

Business / Leisure |
15

Govemment

(c)

Industary

Scnool/Hosptial

Fig. 11. Case 3: Three typical temporal flow patterns. (a) A general rise-and-fall pattern. (b) A pattern distributed in a
small town. (c) An outlier in which the human activity is raised from 4 a.m to 6 a.m.

6.4 Case 3: Analyzing Temporal Patterns

Further we utilize the views for temporal pattern analysis to
investigate human activities in the temporal space. By common
sense it is expected that the human activity should be raised
in the morning, remain stable on the daytime and reduce in
the evening. In this section we study if it is the case. After
performing clustering algorithm on the flow sequences on
Jan. 30, 2014 with k = 50, the cell towers are divided into
50 clusters. We choose three typical clusters in the result,
as illustrated in Figure 11. The first cluster (Figure 11 (a))
shows a general pattern in most cell towers which depicts the

abovementioned rise-and-fall pattern in the line chart. In the
radar chart it can be found that most of the cell towers lie in
living districts and transportation districts. In Figure 11 (b), a
cluster of cell towers that locate in a small town is presented. In
the corresponding line chart, the flow drops down deeply after
12 o’clock. Furthermore, the cluster with two outliers shown in
Figure 11 (c) indicates that the flow grows up quickly at 4:00
am and drop down at 6:00 am, which might be a local event
near the cell towers. We infer that the event may be related
to industrial production because in the radar chart both of the
cell towers are located in an industrial area.
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Fig. 12. Case 4: Community structures in different times:
(a) The communities of cell towers in three specified
hours. (b) The corresponding difference maps.

6.5 Case 4: Analyzing the Relation between Social
Ties and Mobility

In this case, we study the community structure of the phone
call network and how crowd flow influences the spatial distri-
bution of the CDRs. We take the CDR and trajectory data of
Dec. 18, 2013 as the test data. We aggregate the CDRs in each
hour and compute the communities. Figure 12 (a) displays the
communities of cell towers in three separated hours and the
difference maps from the maps in previous hours. From the
perspective of community numbers, in the time interval of 1
a.m. ~ 2 a.m., the fragments of communities are significantly
more than other two hours.

7 DiscusSION AND CONCLUSION

In this paper, we propose an Eulerian approach for studying
urban crowd flow. The multiple visualization views support the
visual exploration the flow volume and direction for each cell.
Meanwhile, a visual-enhanced analysis method is dedicated
to discover the temporal patterns and correlations of cells. We
study the relations between the human social relations and
their flow for the purpose of connecting the social information
and physical movements.

One promising extension of our work is to integrate four
analysis steps in one view. Currently our system provides an
isolated view for each method. We also expect to integrate
network flow mining approach with our system.
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